Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Carbon allocation and partitioning in aspen clones varying in sensitivity to tropospheric ozone.

Identifieur interne : 004A99 ( Main/Exploration ); précédent : 004A98; suivant : 004B00

Carbon allocation and partitioning in aspen clones varying in sensitivity to tropospheric ozone.

Auteurs : M D Coleman [États-Unis] ; R E Dickson ; J G Isebrands ; D F Karnosky

Source :

RBID : pubmed:14965917

Abstract

Clones of aspen (Populus tremuloides Michx.) were identified that differ in biomass production in response to O(3) exposure. (14)Carbon tracer studies were used to determine if the differences in biomass response were linked to shifts in carbon allocation and carbon partitioning patterns. Rooted cuttings from three aspen Clones (216, O(3) tolerant; 271, intermediate; and 259, O(3) sensitive) were exposed to either charcoal-filtered air (CF) or an episodic, two-times-ambient O(3) profile (2x) in open-top chambers. Either recently mature or mature leaves were exposed to a 30-min (14)C pulse and returned to the treatment chambers for a 48-h chase period before harvest. Allocation of (14)C to different plant parts, partitioning of (14)C into various chemical fractions, and the concentration of various chemical fractions in plant tissue were determined. The percent of (14)C retained in recently mature source leaves was not affected by O(3) treatment, but that retained in mature source leaves was greater in O(3)-treated plants than in CF-treated plants. Carbon allocation from source leaves was affected by leaf position, season, clone and O(3) exposure. Recently mature source leaves of CF-treated plants translocated about equal percentages of (14)C acropetally to growing shoots and basipetally to stem and roots early in the season. When shoot growth ceased (August 16), most (14)C from all source leaves was translocated basipetally to stem and roots. At no time did mature source leaves allocate more than 6% of (14)C translocated within the plant to the shoot above. Ozone effects were most apparent late in the season. Ozone decreased the percent (14)C translocated from mature source leaves to roots and increased the percent (14)C translocated to the lower stem. In contrast, allocation from recently mature leaves to roots increased. Partitioning of (14)C among chemical fractions was affected by O(3) more in source leaves than in sink tissue. In source leaves, more (14)C was incorporated into the sugar, organic acid and lipids + pigments fractions, and less (14)C was incorporated into starch and protein fractions in O(3)-treated plants than in CF-treated plants. In addition, there were O(3) treatment interactions between leaf position and clones for (14)C incorporation into different chemical fractions. When photosynthetic data were used to convert percent (14)C transported to the total amount of carbon transported on a mass basis, it was found that carbon transport was controlled more by photosynthesis in the source leaves than proportional changes in allocation to the sinks. Ozone decreased the total amount of carbon translocated to all sink tissue in the O(3)-sensitive Clone 259 because of decreases in photosynthesis in both recently mature and mature source leaves. In contrast, O(3) had no effect on carbon transport from recently mature leaves to lower shoots of either Clone 216 or 271, had no significant effect on transport to roots of Clone 216, and increased transport to roots of Clone 271. The O(3)-induced increase in transport to roots of Clone 271 was the result of a compensatory increase in upper leaf photosynthesis and a relatively greater shift in the percent of carbon allocated to roots. In contrast to those of Clone 271, recently mature leaves of Clone 216 maintained similar photosynthetic rates and allocation patterns in both the CF and O(3) treatments. We conclude that Clone 271 was more tolerant to O(3) exposure than Clone 216 or 259. Tolerance to chronic O(3) exposure was directly related to maintenance of high photosynthetic rates in recently mature leaves and retention of lower leaves.

DOI: 10.1093/treephys/15.9.593
PubMed: 14965917


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Carbon allocation and partitioning in aspen clones varying in sensitivity to tropospheric ozone.</title>
<author>
<name sortKey="Coleman, M D" sort="Coleman, M D" uniqKey="Coleman M" first="M D" last="Coleman">M D Coleman</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA Forest Service, North Central Forest Experiment Station, Forestry Sciences Laboratory, P.O. Box 898, Rhinelander, WI 54501, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service, North Central Forest Experiment Station, Forestry Sciences Laboratory, P.O. Box 898, Rhinelander, WI 54501</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dickson, R E" sort="Dickson, R E" uniqKey="Dickson R" first="R E" last="Dickson">R E Dickson</name>
</author>
<author>
<name sortKey="Isebrands, J G" sort="Isebrands, J G" uniqKey="Isebrands J" first="J G" last="Isebrands">J G Isebrands</name>
</author>
<author>
<name sortKey="Karnosky, D F" sort="Karnosky, D F" uniqKey="Karnosky D" first="D F" last="Karnosky">D F Karnosky</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1995">1995</date>
<idno type="RBID">pubmed:14965917</idno>
<idno type="pmid">14965917</idno>
<idno type="doi">10.1093/treephys/15.9.593</idno>
<idno type="wicri:Area/Main/Corpus">004A72</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004A72</idno>
<idno type="wicri:Area/Main/Curation">004A72</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004A72</idno>
<idno type="wicri:Area/Main/Exploration">004A72</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Carbon allocation and partitioning in aspen clones varying in sensitivity to tropospheric ozone.</title>
<author>
<name sortKey="Coleman, M D" sort="Coleman, M D" uniqKey="Coleman M" first="M D" last="Coleman">M D Coleman</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA Forest Service, North Central Forest Experiment Station, Forestry Sciences Laboratory, P.O. Box 898, Rhinelander, WI 54501, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service, North Central Forest Experiment Station, Forestry Sciences Laboratory, P.O. Box 898, Rhinelander, WI 54501</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dickson, R E" sort="Dickson, R E" uniqKey="Dickson R" first="R E" last="Dickson">R E Dickson</name>
</author>
<author>
<name sortKey="Isebrands, J G" sort="Isebrands, J G" uniqKey="Isebrands J" first="J G" last="Isebrands">J G Isebrands</name>
</author>
<author>
<name sortKey="Karnosky, D F" sort="Karnosky, D F" uniqKey="Karnosky D" first="D F" last="Karnosky">D F Karnosky</name>
</author>
</analytic>
<series>
<title level="j">Tree physiology</title>
<idno type="eISSN">1758-4469</idno>
<imprint>
<date when="1995" type="published">1995</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Clones of aspen (Populus tremuloides Michx.) were identified that differ in biomass production in response to O(3) exposure. (14)Carbon tracer studies were used to determine if the differences in biomass response were linked to shifts in carbon allocation and carbon partitioning patterns. Rooted cuttings from three aspen Clones (216, O(3) tolerant; 271, intermediate; and 259, O(3) sensitive) were exposed to either charcoal-filtered air (CF) or an episodic, two-times-ambient O(3) profile (2x) in open-top chambers. Either recently mature or mature leaves were exposed to a 30-min (14)C pulse and returned to the treatment chambers for a 48-h chase period before harvest. Allocation of (14)C to different plant parts, partitioning of (14)C into various chemical fractions, and the concentration of various chemical fractions in plant tissue were determined. The percent of (14)C retained in recently mature source leaves was not affected by O(3) treatment, but that retained in mature source leaves was greater in O(3)-treated plants than in CF-treated plants. Carbon allocation from source leaves was affected by leaf position, season, clone and O(3) exposure. Recently mature source leaves of CF-treated plants translocated about equal percentages of (14)C acropetally to growing shoots and basipetally to stem and roots early in the season. When shoot growth ceased (August 16), most (14)C from all source leaves was translocated basipetally to stem and roots. At no time did mature source leaves allocate more than 6% of (14)C translocated within the plant to the shoot above. Ozone effects were most apparent late in the season. Ozone decreased the percent (14)C translocated from mature source leaves to roots and increased the percent (14)C translocated to the lower stem. In contrast, allocation from recently mature leaves to roots increased. Partitioning of (14)C among chemical fractions was affected by O(3) more in source leaves than in sink tissue. In source leaves, more (14)C was incorporated into the sugar, organic acid and lipids + pigments fractions, and less (14)C was incorporated into starch and protein fractions in O(3)-treated plants than in CF-treated plants. In addition, there were O(3) treatment interactions between leaf position and clones for (14)C incorporation into different chemical fractions. When photosynthetic data were used to convert percent (14)C transported to the total amount of carbon transported on a mass basis, it was found that carbon transport was controlled more by photosynthesis in the source leaves than proportional changes in allocation to the sinks. Ozone decreased the total amount of carbon translocated to all sink tissue in the O(3)-sensitive Clone 259 because of decreases in photosynthesis in both recently mature and mature source leaves. In contrast, O(3) had no effect on carbon transport from recently mature leaves to lower shoots of either Clone 216 or 271, had no significant effect on transport to roots of Clone 216, and increased transport to roots of Clone 271. The O(3)-induced increase in transport to roots of Clone 271 was the result of a compensatory increase in upper leaf photosynthesis and a relatively greater shift in the percent of carbon allocated to roots. In contrast to those of Clone 271, recently mature leaves of Clone 216 maintained similar photosynthetic rates and allocation patterns in both the CF and O(3) treatments. We conclude that Clone 271 was more tolerant to O(3) exposure than Clone 216 or 259. Tolerance to chronic O(3) exposure was directly related to maintenance of high photosynthetic rates in recently mature leaves and retention of lower leaves.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">14965917</PMID>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1758-4469</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>9</Issue>
<PubDate>
<Year>1995</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Tree physiology</Title>
<ISOAbbreviation>Tree Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Carbon allocation and partitioning in aspen clones varying in sensitivity to tropospheric ozone.</ArticleTitle>
<Pagination>
<MedlinePgn>593-604</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Clones of aspen (Populus tremuloides Michx.) were identified that differ in biomass production in response to O(3) exposure. (14)Carbon tracer studies were used to determine if the differences in biomass response were linked to shifts in carbon allocation and carbon partitioning patterns. Rooted cuttings from three aspen Clones (216, O(3) tolerant; 271, intermediate; and 259, O(3) sensitive) were exposed to either charcoal-filtered air (CF) or an episodic, two-times-ambient O(3) profile (2x) in open-top chambers. Either recently mature or mature leaves were exposed to a 30-min (14)C pulse and returned to the treatment chambers for a 48-h chase period before harvest. Allocation of (14)C to different plant parts, partitioning of (14)C into various chemical fractions, and the concentration of various chemical fractions in plant tissue were determined. The percent of (14)C retained in recently mature source leaves was not affected by O(3) treatment, but that retained in mature source leaves was greater in O(3)-treated plants than in CF-treated plants. Carbon allocation from source leaves was affected by leaf position, season, clone and O(3) exposure. Recently mature source leaves of CF-treated plants translocated about equal percentages of (14)C acropetally to growing shoots and basipetally to stem and roots early in the season. When shoot growth ceased (August 16), most (14)C from all source leaves was translocated basipetally to stem and roots. At no time did mature source leaves allocate more than 6% of (14)C translocated within the plant to the shoot above. Ozone effects were most apparent late in the season. Ozone decreased the percent (14)C translocated from mature source leaves to roots and increased the percent (14)C translocated to the lower stem. In contrast, allocation from recently mature leaves to roots increased. Partitioning of (14)C among chemical fractions was affected by O(3) more in source leaves than in sink tissue. In source leaves, more (14)C was incorporated into the sugar, organic acid and lipids + pigments fractions, and less (14)C was incorporated into starch and protein fractions in O(3)-treated plants than in CF-treated plants. In addition, there were O(3) treatment interactions between leaf position and clones for (14)C incorporation into different chemical fractions. When photosynthetic data were used to convert percent (14)C transported to the total amount of carbon transported on a mass basis, it was found that carbon transport was controlled more by photosynthesis in the source leaves than proportional changes in allocation to the sinks. Ozone decreased the total amount of carbon translocated to all sink tissue in the O(3)-sensitive Clone 259 because of decreases in photosynthesis in both recently mature and mature source leaves. In contrast, O(3) had no effect on carbon transport from recently mature leaves to lower shoots of either Clone 216 or 271, had no significant effect on transport to roots of Clone 216, and increased transport to roots of Clone 271. The O(3)-induced increase in transport to roots of Clone 271 was the result of a compensatory increase in upper leaf photosynthesis and a relatively greater shift in the percent of carbon allocated to roots. In contrast to those of Clone 271, recently mature leaves of Clone 216 maintained similar photosynthetic rates and allocation patterns in both the CF and O(3) treatments. We conclude that Clone 271 was more tolerant to O(3) exposure than Clone 216 or 259. Tolerance to chronic O(3) exposure was directly related to maintenance of high photosynthetic rates in recently mature leaves and retention of lower leaves.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Coleman</LastName>
<ForeName>M D</ForeName>
<Initials>MD</Initials>
<AffiliationInfo>
<Affiliation>USDA Forest Service, North Central Forest Experiment Station, Forestry Sciences Laboratory, P.O. Box 898, Rhinelander, WI 54501, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dickson</LastName>
<ForeName>R E</ForeName>
<Initials>RE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Isebrands</LastName>
<ForeName>J G</ForeName>
<Initials>JG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Karnosky</LastName>
<ForeName>D F</ForeName>
<Initials>DF</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Canada</Country>
<MedlineTA>Tree Physiol</MedlineTA>
<NlmUniqueID>100955338</NlmUniqueID>
<ISSNLinking>0829-318X</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1995</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1995</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1995</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">14965917</ArticleId>
<ArticleId IdType="doi">10.1093/treephys/15.9.593</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Wisconsin</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Dickson, R E" sort="Dickson, R E" uniqKey="Dickson R" first="R E" last="Dickson">R E Dickson</name>
<name sortKey="Isebrands, J G" sort="Isebrands, J G" uniqKey="Isebrands J" first="J G" last="Isebrands">J G Isebrands</name>
<name sortKey="Karnosky, D F" sort="Karnosky, D F" uniqKey="Karnosky D" first="D F" last="Karnosky">D F Karnosky</name>
</noCountry>
<country name="États-Unis">
<region name="Wisconsin">
<name sortKey="Coleman, M D" sort="Coleman, M D" uniqKey="Coleman M" first="M D" last="Coleman">M D Coleman</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004A99 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004A99 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:14965917
   |texte=   Carbon allocation and partitioning in aspen clones varying in sensitivity to tropospheric ozone.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:14965917" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020